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This research was conducted by the Engineering Department, Cambridge E!!
University, under contract number ARDSG-27-82, from the European Research -
Office, London. The studies were sponsored by the U.S. Army Construction ig:
Engineering Research Laboratory (USA-CERL) for the Office of the Chief of ::a:
Engineers (OCE). The work was conducted under Project 4A161102AT23, "Basic ﬁ*j
Research in Military Construction"; Task A, "Base/Facility Development"; ;:'
and Work Unit 022, "Mechanical Properties of Polymers," of which it is one ﬁ4’

g of several sub-tasks in the research. The overall research is designed to Tl
oy provide a better understanding of the micromechanics of deformation and N
§~; rupture of polymer chains so that bulk material performance is better oy
RE understood and acceptable design values for polymer-based materials can be M
L provided to engineer and architect designers. —
o The USA-CERL Principal Investigator is Mr. Alvin Smith of the Engineer- :;::
= ing and Materials Division (EM). Dr. Robert Quattrone is Chief, USA-CERL-EM. o
.- ;':-.‘:
25 COL Paul J. Theuer is Commander and Director of CERL, and Dr. L. R. O
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PART | DEFORMATION-MODE MAPS FOR POLYMER-FOAMS

Summary

The mechanical properties (elastic, plastic, creep and fracture)
of cellular solids or foams are related to the properties of the cell
wall material and to the cell geometry. The properties are well
described by simple formulae. Such materials occur widely in nature
and have many potential engineering applications.

l. THE STRUCTURE OF CELLULAR SOLIDS

Making foams is not difficult. Most polymers can be foamed
easily, and techniques exist for doing the same thing with ceramics
and glasses. Even metals can be formed into foams.

Some foams are almost isotropic, meaning that their structure
and their properties have no ciirectionality. Others are anisotropzc:
their structure is axisymmetric (like cork) or orthotropic (like
wood); and their properties reflect this. Man-made foams tend to be
almost isotropic. Natural cellular solids are rarely so; a single
piece of cork or bone differs in strength and stiffness by a factor
of 2 or more along two directions at right angles.

There is a second distinction. Some foams have closed cells

(like a soap foam): the solid material is distributed in little

PP
"

.

2.
<.,

)
bl

plates which form the faces of the cells. Others have open cells

1y

(l.ce a sponge): the solid material is distributed in little columms

P

or beams which form the cell edges. The mechanical properties reflect,

e

to some extent, this distribution. In reality, most man-made foams,

v
'n’.‘l l,'l

r »

even those with closed cell faces, behave like open-celled foams

because surface tension draws much of the solid material into the

e

cell edges during manufacture.

The most important aspect of the structure is the relative

Noras

density, °/°s’ where p 1is the density of the foam and pg that of
the solid of which the foam is made. The mechanical properties of
foame depend, above all else, on the relative density. It can vary

from | to as little as 0.0! . The familiar foamed plastics used

for packaging have a relative density of around 0.05 .
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'@ 2. DEFORMATION MECHANISMS AND IDEALISED FOAM STRUCTURES
;&T Detailed studies(l-a) of model foams have identified four

3&2 deformation modes: linear elasticity, non-linear elasticity, plastic

{i] collapse and various sorts of fracture. The studies used 2-dimensional
l' hexagonal cells, like those in the diagrams shown later in this paper.
f:i A hexagonal network is a good starting point because the modes of

33 deformation correspond to those of 3-dimensional foams, yet the

“; geometry is simple enough that a complete analysis is practical. The

understanding derived from the 2-dimensional models has provided the

:Eﬂ foundation for the analysis of the more complicated problem presented
'::; by real, 3-dimensional foams(a-lo) given below.

':3 In the analysis, the 3-dimensional structure of the foam must be
A included. It is idealised, without loss of physically important
’i" features, in the models shown in Fig.l. The open-cell foam is modelled

'E: as a cubic array of members of length & and square section of side t.
:&: Adjoining cells are stagsered so that members meet at mid-points. The

a‘ relative density of the cell, p/ps (where G is the density of the

fzi cell wall material) is then given by:

o RS ()

e Pq L
{ . and the second moment of the section of a member (which we need later)

E&j is given by:

= - @

j: A closed-cell foam is modelled similarly. The square struts are
,;; replaced by square plates of side 2 and thickness t . Adjoining

i:i cells are again staggered. Then:

::: % =z , I = ’L,—t; (3)

.i; As pointed out earlier, most foams behave more like the first model,

;i because surface tension concentrates material into the cell edges
during their manufacture. We will use it as the basis of the g_!i
E:: calculations given below, which treat isotropic foams. Refinements, iﬂf
- o

results for the second model and the generalisations to non-isotropic

~
¥od foams are given elsewhere(z’lo).

Symbols are defined in Table .
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3. MECHANICAL PROPERTIES

When a foam is compressed, the stress-strain curve shows 3 regions
(Fig.2). At low strains, the foam deforms in a linear—elastic way;
there is then a plateau of deformation at almost constant stress; and
finally there is a region of densification as the cell walls crush to-
gether., The extent of each region depends on relative density D/ps .
Elastic foams, plastic foams, and even brittle foams all have 3-part
stress-strain curves like this, though the mechanism causing the plateau
is different in each case,

The deformation of a regular, 2-dimensional foam like that sketched
in Fig.3, can be analysed with precision. It is far more difficult to
do the same analysis for a 3-dimensional foam, because the response is
an average of that of cell walls of random orientation in space, and
with a distribution of length 2% and section t2 . It is better to use
the dimensional argument given below, and then rely on experiment to
determine a single, unknown, constant of proportionality. This method,
which we have used to analyse many properties of foams, will become

clearer as it is applied in the following sections.

o
s
[ N T X

'.l"'ll

MR AP

3.1 Linear Elastic Properties

[y

When a foam is loaded, the cells walls at first bend(2’3’7’9’lo).

7 3

-r

Fig.3 shows this bending for the 2-dimensional model; the same bending
deformation occurs in 3-dimensional foams. A force F , applied as
shown, causes the non-vertical beams to deflect by & , which is
calculated from simple beam theory as:
clrz3
§ = (4)

12E_ 1
s

Here C] is a resolution factor which depends only on the cell geometry

and Es is the Young's modulus of the solid cell wall material. For

open cell foam of Fig.!(a) the stress is proportional to F/22 , the

strain to §/¢ . The second moment of area, I , is proportional to t“

(eqn. 2) giving:

[ 4
S %%
A

[4
4

Using eqn.(!) for the density, we find:

'.'" %l
LRI

E 0,2
8 s

vwhere G, is a constant. The shear modulus scales in a similar way,
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because shear deformation in a foam also causes simple bending of the
cell walls(z).

Data are compared with eqn.(5) in Fig.4. It shows Young's moduli
for polymeric and ceramic foams plotted against o/os on logarithmic
scales. The full line is a plot of eqn.(5) with C2 =] ; it gives a
good description of a wide range of materials and densities. Note that
the modulus falls rapidly as the volume of void space in the foam
increases. The range of modull practically available by foaming is
large: it spans a factor of 104 . The modulus is important in the
design of load-bearing structures which incorporate foams (sandwich

panels for example).

3.2 Non-Linear Elastic Behaviour

Linear elasticity, of course, is limited to small strains,
typically 52 1in compression, rather more in tension. Elastomeric
foams can be compressed far beyond this point. The deformation is still
recoverable (and thus elastic) but is non-linear; it is caused by the
elastic buckling of the columns or plates which make up the cell edges

or walls(z’s’s’lo)

as shown in Fig.5, giving the plateau of the stress-
strain curve* (Fig.2). It is exploited in cushions and packaging to
give a restoring force (which we now calculate) which is independent of
displacement.

The critical load at which a column of length £ , Young's modulus
Es and second moment of area I buckles is given by Euler's formula:

n? 72 Es I
- —_—— (6)
9‘2

The constant n? describes the degree of comstraint at the ends of the

cr

column. If this load is reached for a layer of cells spanning the
section, they will buckle, initiating the elastic collapse of the foam.
For the 3-dimensional open-cell foam of Fig.l, the stress cgl at
which this occurs is proportional to Fcr/f.2 , so that:

ESI

ag* - n2 nl
el b

Using eqns.(l) and (2) we obtain:

*Several authors(3’9‘]4’19’20) studying the collapse of rigid foams
sought to interpret their results as elastic buckling. Their
calculations are in the spirit of that given here, but are
inappropriate to the materials they studied.
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Sj; valid for relative densities below 0.3 because, at higher densities, :if
e the cell walls are too short and stocky to buckle. f‘f
‘f . Data for o:l for elastomeric foams are compared with eqn.(7) ffig
AN in Fig.6. They are well fitted by the equation with Cy = 0.05 . tfﬁ
o Like the modulus, the elastic collapse stress spans a wide range: for 5{f
{3? a given material, a range of 10* is accessible. This is important ;id
e for the design of cushions, padding and packaging. j:;]
>, -
= 3.3 Plastic Yielding i
‘;\i Cellular materials can collapse by other mechanisms. If the cell-
&hu- wall material is plastic (as are metals and many polymers) then the foam
fﬁsj as a whole shows plastic behaviour. It is exploited in crash barriers
5%:5 and energy absorbing systems.
KN Plastic collapse occurs when the moment exerted on the cell walls
;Ff, by the force F exceeds the fully plastic moment, creating plastic
irf: hinges(z’lo’ZI’zz) as shown in Fig.7. For a beam of square section of
:ig side t , the fully plastic moment is:
T
:\_i M) - -:;-ay £3 (8)
i;i If a force F acts with a component normal to a beam of length £ , the
ﬁ;ﬁ ; maximum bending moment is proportional to FL . The stress on the foam,
- as before, is proportional to F/22 . Combining these results we find
~§:j the plastic collapse stress of the foam to be:
o
O
';é‘ Using eqn. (1) we obtain:
::?l = c, (B"—)% 9
R v s
iii Data for the plastic deformation and for the plagtic indentation
< of foams (discussed next) are plotted in Fig.8. They are well fitted
jﬁﬁ by eqn.(9) with C6 = 0.3 for relative densities of less than <§ (at
: : higher densities the cell edges are too short and stocky to bend
i;; plastically). The plastic collapse stress can be '"tailored", by choosing
'T a foam of the right density, over a range of 103 . It is of primary
E;& importance in the design of crash padding and energy-absorbing foams.
"
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3.4 Plastic Indentation

Unlike dense solids, which are incompressible when deformed
plastically to large strains, foams change their volume when
compressed. The cells of the foam collapse as the foam is squeezed,
so that axial compression produces almost no lateral spreading.
(Poisson's ratio for the plastic compression of low density foam is,
typically, 0.04 ("10’24’25). Such foams yield plastically under a
mulctiaxial state of stress when the maximum principal stress, not the
octahedral shear stress, reaches the critical value 0;1 calculated in
the last sectionm.

Because of this, the indentation hardness of a foam is lower than
that of a dense solid of the same yield stress: elements of the foam,
compressed beneath the indenter, do not expand, and so are not coustrained
by the surrounding material in the same way that elements in a dense

(16)

solid are. An analysis of the problem shows that, for relative
densities less than about 0.3 , che intentation pressure, or "hardness"

H of the foam is simply:

H = 0;1 (10)
(instead of the result H = 30y for a-dense solid). Two experimental
studies(lﬁ'za) confirm this result. The data from the second study are

included in Fig.8.

3.5 The Crushing Strength

Brittle foams (ceramics, and certain rigid polymers) collapse by

(26)

yet other mechanisms: brittle crushing in compression , brittle

fracture in tension(27'28). The low crushing strength of refractory
brick (a cellular solid) limits the loads than can be applied to it;

and the low fracture toughness of foar can cause problems when they

carry tensile loads, as they do in w h panels.
Let the modulus of rup:ure* or < ~=wall material be de -
A cell wall will then fail (Fig.9) when ment acting on it exceeds:
M, = Lo &3 ()
£ 6t

*Thc modulus of rupture of an elastic beam, loaded in bending, is the
maximum surface stress in the beam at the instant of failure. The
maximum stress is related to the moment by eqn.(11). The modulus of
rupture for a brittle solid is often close to the tensile fracture
strength.
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As before, a force F , acting with a component normal to the wall of

length £ , exerts a moment which is proportional to FL . The stress
on the foam, as before, is proportional to F/t2 . Combining these
results we find that collapse by crushing will occur at the stress:

M t,3
i B S A

Using eqn.(l), we obtain:

o8 =

£ ., i 12) o)
£ s :‘

There are few experimental measurements of the crushing of brittle &;ﬁ

(18,22)

foams. The limited data , shown in Fig.10, are insufficient to

give confidence that eqn.(12) is a good description. But certain other
observations do suggest that the model has the correct physical
ingredients. First (and remarkably) the tensile and compressive
fracture stress of unnotched foams should, according to the model, be
equal (for brittle solids, the crushing strength is roughly 10 times
the tensile strength). Measurements on foancd(la) glasses show that
this is so. And, second, an extension of the model to describe crack
propagation, and to predict the fracture toughness of foams, describes
data well.

3.6 The Tenstile Fracture Stresses

Compressive fracture is insensitive to defects - such things as
flaws, cracks, or a few exceptionally large cells. But this is not so
for tensile fracture. A completely unflawed sample, it is true, should
sustain a tensile stress as high as that given by eqn. (12) before failing.
But if it contained a crack or flaw, then the stress concentration it induces
will fracture cell walls locally, extending the flaw and leading to sudden
fracture (Fig. 11).

When & brittle foam is loaded, the cell walls at first deform elastically.
The load is transmitted through the foam as a set of discrete forces and mom-
ents acting on cell walls. But, since the foam is ltnear elastic until the
cell walls buckle, the average force and moment on a given cell wall can
be calculated from the stress field in the equivalent linear-elastic con-
tinuum. We solve the discrete problem by taking the solution of the
equivalent continuum problem (just as we do on a smaller scale in replac-
ing the discrete bonds between atoms by a continuum) and using it to
calculate the forces and moments on the discrete cell walls.
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A crack of length a in an elastic solid, lying normal to a remote

L4 »
tensile stress o , creates a singular stress field:

o J/ra
V2rr

g = (13)
at a distance r from its tip. Consider the first unbroked cell wall,

which we take to be £/2 beyond the tip; it is subjected to a force:
F« g2
where o =qa Yalp

This exerts a bending moment on the walls marked A and C, and bending
moment plus a tensile stress on the wall marked B (Fig. 11). If, as
before, the walls fail when the moment, proportional to F, exceeds the
fracture moment given by eqn. (1l1), then the crack advances. Assembling
these results gives:

» t3 Of

g « —
B va/ g

where og» AS before, is the modulus of rupture of the cell wall.
Using eqn. (1) we obtain:
o«

+ o0
o =C3(&ﬂ £
°s  /al1

(14)

@ . . .
where o is the remote stress which will cause the crack to propagate.

The equation is valid only when a > ¢ (otherwise there is no crack).

The result is just what would be expected. The fracture strength
equals that for the unnotched material (eqn. 12) if the crack size is
equal to the cell size. In an open-cell foam, a wall is either broken,
or it is not. If the crack size is less than the cell size, no cell walls

are broken and the foam is undamaged. Comparing eqn. (14) with the definition

of KIC (the plane-strain toughness) for a through-crack in an infinite sheet:

KIC = cc ery
we find K
€. Cg ) (15)
og veT) Ps
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Data for crack propagation in a brittle polymeric foam are plotted
in Fig. 12. Eqn. (15), with Cg = 0.65, gives a good description of
the data. Unlike all the other properties, K depends on cell size.

IC
contains a dimension of length; the only

This, too, is expected: KIC
lengths which enter the problem are the cell size 2 and the wall
thickness t, but that is related to 2% through the relative den-
sity D/Ds (eqn. 1). The result is important whatever foams are used
in load-bearing applications in which tensile forces appear - as they

do in sandwich panels.

4. QVERALL MECHANICAL RESPONSE: DEFORMATION MAPS

When an elastomeric foam is compressed, it first deforms in a
linear—elastic way; then its cells buckle to give non-linear elasticity;
and, finally, the cells collpase completely and the stress rises
rapidly as opposing cell walls are forced together. A plastic foam
behaves in a somewhat similar way, except that, now, linear elasticity
is followed by plastic collapse, and, finally, the forcing together of
the cell walls. With brittle foams, progressive crushing can again lead
to a plateau, ending when the material is completely crushed. The
relevant formuli for open cell foams are summarised in Table 3, together

with the equivalent results for true closed-cell foams (Fig.lb). Most

man-made foams behave mechanically as if they had open cells, because

surface tension (or other factors) concentrates the solid into the cell

n',
.,
')

edges.

*
s s

....‘
.
s, L

The extent of each phase of deformation depends on the relative
density. It is convenient to display this behaviour as a map with axes

compressive stress and compressive strain, showing the fields inm which

each mechanism is dominant. Superimposed on the field are contours of
constant (initial) relative density.

4.1 Deformation Map for Elastomeric Foams

Fig. 13 shows a map for elastomeric foams. The linear elastic

regime terminates when elastic buckling starts. The boundary of this
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field (heavy solid line) lies at the strain at which elastic collapse f?*

starts. Froms eqns.(5) and (7), this strain is:
e = C; =~ 0.05 (16)

At relative densities above 0.3 the cell walls become so stocky that
they can no longer buckle elastically. The curvature of the field
boundary is such as to make the linear-elastic loading line for

p/eg = 0.3 tangent to the boundary.

The field of elastic buckling ends at the strain at which the
foam finally "bottoms out', or densifies, with a rapid increase of load
with displacement. This starts when the folding of the cells is so
great that the walls begin to touch. We find that this begins when the
foam has been compressed to a new relative density of about 0.5 (that
is, the void space occupies half the volume), and it is complete when
the foam has been compressed to a new relative density of | (no void
space left).

During elastic buckling the foam compresses axially with no lateral
spreading (v = d). Then the relative density after a nominal
compressure strain* e 1s just (p/ps)(l/(l-e)) . Equating this to

0.5 gives the strain at which densification starts:
€ = | = 2 =~ (17)

and equating it to 1 gives the strain at which densification is

complete:

c = 1 - (18)

o

c Pq

(where p/ps , of course, is the 7nttzal relative density). Within the

elastic buckling field, the stress is related to the density by eqn.(7);
using eqn.(17) gives the equation of the field boundary (heavy solid

line) for the start of densification:

-
.
s & .

2 1 =10 (&}
€ 1 10 (Es) (19)

A A

Wit

Nominal compressive strain ¢ = (h,~h)/h, where hj is the original
height and h the height after a compressive strain of ¢ .
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The contours are stress-strain curves for foams of relative

:::: density vetween 1072 and | . They show a linear elastic regime
.E;i (eqn.5), and a plateau corresponding to elastic buckling (eqn.7); they
S start to bend upwards when densification starts (eqn.l9) and approach
o a limiting slope of Es when densification is complete (eqn.18).
Y Within the field of elastic buckling the material can exist in two
Ef}: states at almost the same stress (rather like the p - v response of
"YJ an ideal gas). It collapses in bands which broaden as strain increases:
‘ f Fig.14, of cork, illustrates this,
'{:? The figure describes the overall response of all isotropic foams
:;ﬁ; in compression. Elastomeric foams in tension show roughly linear-
oy elastic response to rupture.
\
-5?3 4.2 Plastic Foams
\ﬁr? Plastic foams (Fig.15), like the elastic ones, show three regions:
s linear elasticity, plastic collapse, and densification - though now the
MO strain beyond the linear-elastic regime is not recoverable.
:;f: The boundary of the linear-elastic field (heavy line) is obtained
;CE from eqns.(5) and (9); its equation is:
o
{ ;;2- = (0.3 ;Z)k—'a- (20)
K s s €
;5 In constructing this map we have taken oy/Es to be 0.05 . Next to E
. the linear-elastic field is the field of plastic collapse. As before, o
w two states of strain coexist at almost the same stress, so that :
o complete collapse of part of the structure can occur while the rest is E;{
ngq still elastic (Fig. 16); the bands of dense material broaden with i:i
-f& increasing strain. Densification starts (as before) when the cell :E;
e A
.*:f walls touch (eqn.l7) and is complete when the relative density reaches !:
e 1 (eqn.19). The field boundary (heavy line) defining the start of o
i:f densification is given, by the arguments leading to eqn.(19), by: ;
o o 3 =
ol e = 1 =45 (/gD (21) et
, s s 1@
:Qik Superimposed on the fields are stress-strain curves for foams of :ff
;jx initial relative density between 0.05 and | . They show a linear %L?
f.? elastic regime (eqn.5) and a plateau corresponding to plastic collapse ii]
'.n (eqn.9); they start to bend upward when densification starts (eqn.21) :!:i
:;E; and reach a limiting slope of E, when densification is complete E;ﬁ
:EE (eqn.18). t:ﬂ
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The figure shows the overall response of isotropic, plastic foams
in compression. It is less general than the map for elastomeric foams
because it must be constructed for a particular value of oy/Es . But
the equations show that the boundaries are not very semsitive to its
value, and, for a given material, the diagram shows the behaviour for

all densities.

4.3 Rigid Foams

Rigid foams show linear-elastic behaviour (eqn.5) to fracture.
In compression, the foam crushes at constant stress (eqn.l12), and since
the crushing equation has the same form as that for plastic collapse,
the behaviour will resemble that of Fig. 1l7. If the foam is contained,
it will densify at the strain given approximately by eqn.(21), with
oy/Es replaced by df/!:‘.s .

4.4 Selection of Foams for Mechanical Design

The deformation-mode maps combine the data for a class of cellular
solid with the understanding of the mechanisms of deformation. Flexible,
or elastomeric foams, are widely used for cushioms, padding and
packaging. In these applications, it is the plateau stress, o:l (eqn.7)
and the extent of the plateau (given by jnverting eqn.20) which are
important. All this information is summarised, for all flexible foams,
in a single map (Fig.13). It shows how, by judicious choice of Es ,

Py and p/ps , a foam best suited to the application can be chosen.
Plastic or "rigid" foams are used for crash barriers and energy absorbing
systems: the aim is to absorb energy while preventing the local stresses
or loads from rising above the level which will injure or damage the
contents of the package. For this purpose, a long plateau at a level

0;1 (eqn.9) below the damage level, is required. Again the necessary
information is summarised in the diagram (Fig.!5) which helps in the
rational choice of foam material and density. The crushing of brittle
foams is more of a problem than a property to be desired. The low
crushing strength of refractory bricks limits the load which they can
carry; and the crushing of bone is a problem when large compressive

loads are applied to it. The deformation-mode map for a class of
brittle cellular solids is identical to that for plastic foams (Fig.l5)
with cy/Es replaced by cf/Es , though the natural variability of
brittle solids means that the predictive precision is lower.

There is considerable scope for developing the diagrams further,
and for investigating diagrams to describe energy absorption by foams.
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5. CONCLUSIONS

(a) When a cellular solid with a relative density below 0.30 is
cdmpressed, it shows a stress-strain curve with three parts: a linear-
elastic part, a long plateau, and a regime of final densification. The
properties of an entire class of such solids can be summarised as a
deformation mode map, which shows how each of the three parts changes
as the relative density changes. The method can be applied to natural
materials, such as woods, to give a diagram which summarises the

properties of that class of material.

(b) The mechanical properties of cellular solids can be modelled with
precision. The models lead to constitutive laws (stress-strain
relations) which have been thoroughly tested in simple compression.

The response to multiaxial loading can be inferred, and the limited data

are consistent with the inferences.

(c) The constitutive laws establish a basis for mechanical design with
foams. The deformation-mode maps give a compact summary of properties,

and give guidance in selecting foams for a specific application.
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,I‘_\-TI TABLE 1: SYMBOLS AND UNITS
s
.'\I
o ) Density of foam (kg/m?)
- o, Density of cell-wall material (kg/m?)
N B Young's Modulus of foam (MPa)
.(- Bs Young's Modulus of ceall-wall material (MPa)

- a:l Elastic collapse stress of elastomeric foam (MPa)
- a;l Plastic collapse stress of plastic foam (MPa)
::::-_- %y Yield strength of cell-wall material (MPa)

: _i’ é Strain rata (s-l)

, €, T, 0 Creep constants (s=1, Mpa, -)

v a; Crushing strength of brittle foam (MPa)

_::.: Og Modulus of ruptura of cell-wall material (MPa)
Kee Practure toughness of foam (MPa a?)

- t Cell wall thickness (m)
( 2 Cell size or cell wall iength (m)

0 a Balf-length of crack (m)

: I Second mcment of area of cell wall (m*)

X P Force acting on a cell wall (N)

. P or Euler buckling load for cell wall (N)
Z-';i L Pully plastic moment of cell wall (Nm)

:‘:E: M, Moment which will just fracture cell wall INm)
- C, - Cq Dimensionlaegs constants

P B; - Bg Dimensionless constants
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TABLE 3: THE EQUATIONS FOR STIFFNESS AND STRENGTH OF FOAMS

Y v . ..
et e, I
L A
. LT e

VP RN N

*
PROPERTY OPEN CELLS FOAMS CLOSED CELL FOAMS' ]
bk
E 0,2 T
LINEAR ELASTICITY s s = = B8, @) N
. s 3
C, =1 (eqn.5) e
* -
ag 2 -
Tasl = Cy = a1 3 o
ELASTIC COLLAPSE s Ps — = B, (pi)
C, = 0.05 (eqn.7) $ s .
"o
o* 3 e
2L.c, &2 o
a 4 "p ok 2 A
PLASTIC COLLAPSE y 8 PL. g (2 N
o 4 DA
c, = 0.3 (eqn.9) y s B
£
¢ 0.3
o c7 (p—) o*
BRITTLE CRUSHING £ s £ &
C, = 0.65 (eqn:13) o T e

#
In most foams the solid is concentrated into the cell edges; then the
open-cell formulae are appropriate. The maps shown in Figs.l5 and 17
were constructed using them.

fThese equations refer to true, closed~cell foams with no thickening of
the cell edges. They are derived by the method given in the text, but
using eqn.(3) in place of eqns. (1) and (2). The quantities Bl to Bz
are dimensionless constants.
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COMPRESSIVE STRAIN,

loads cause bending moments to be applied to the

-

1 structure of open and closed-

o2

Most foams behave like the open—cesll

nsiona

csll foams, idealised.

The typical shape of the stress-strain curve for a foam.
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Pig. 3 The linear—elastic deformation of a foam: the cell walls
bend so thac the bending deflection § is proporticnal
to the force 7F.
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Fig. 4 The rslative Young's modulus, E/Es’ plotted against
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polymer foams, crosses are ceramic and glass foams. (The ref-
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Fig. 9 The crushing of a brittle foam: the modulus of rupture
of the cell walls is exceeded, causing them to fracture.
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e PART 2 DEFORMATION MAPS FOR SOLID POLYMERS a4
Lo N
S Summary ‘:j .
"..I:‘ .:-.,i‘
e Data for the viscoelastic modulus can be presented as diagrams '
(; which summarise how the modulus depends on temperature and time. The @
diagrams are useful as a way of classifying polymers by the mechanical
ASAN response and in summarising information about the mechanisms of o
o deformation of the polymer, and in presenting design data in an easily e
g accessible way. e
A4S L
W -t
) 03
S 1. INTRODUCTION N
T _— L
ShaN A number of deformation regimes can be identified for a given QRS
e, R
e class of polymers. A linear polymer such as PMMA shows 4 distinct S
B PRI
\ regimes, each characterised by a certain range of modulus: Eid
:::'... (a) Glassy behaviour at T < '1‘g » characterised by a Young's modulus
SN
}:‘_: of around 4 GPa .
N
VoA (b) Viscoelastic behaviour close to Tg , described by a coupling of
' the W L F viscosity with a suitable elastic modulus, leading to
::-_-;:j a time-dependent viscoelastic modulus between 1 and 103 MPa .
.
e
f-;f.’ (c) Rubber elasticity at T > '1'8 , caused by entanglements, following
( i Hooke's law, with a modulus around | MPa ,
-:::;:: (d) Viscous flow at temperatures well above the glass temperature,
oL following a simple viscous flow law.
v, We have made a preliminary examination of the range of operation
KR of each of these mechanisms, and the models which have been developed
P
L. to describe them, with a view to assembling the information into maps.
.-':'-'.:j One possible choice of axes are the vigscoelastic modulus E and
oo normaliged temperature T , where:
N E = 9
TOT -
..‘:._4 € «"
‘:-j::-i where o is the stress, eTOT is the total strain accumulated in a N
ORI -~
«_ g : NS
time t and E®
-"( ~ \1
RN - N
5T T - T ¥
GO e
.- -
- where Tg is the glass temperature (Fig.!). The temperature axis runms . 1
o from T=0 to T =2, and the modulus axis from IO.3 to 104 MPa . '_-.‘
:‘,':::: This is not the only possible way of presenting the results, but it is ';::;:J
- o
,‘;ﬁ one that nicely displays the regimes of glassy, viscoelastic and t:;.::
e ] S
:: rubbery and viscous behaviour. e
--.\
NOA,
. ) e
T
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2. THE GLASSY MODULUS

Amorphous polymers below their glass temperature have moduli
around 4 GN/m? . These low values reflect the stretching of the
relatively weak van der Waals bonds which bind one chain to another, and
by rotation about certain carbon-carbon bonds in the chain backbone such
as to elongate the molecule in the direction of loading (Bowden, 1968;
Yannos and Luise, 1982). The stretching and bending of the carbon-
carbon bonds requires much higher forces, and do not contribute in an
important way to the modulus. If the internal energy of the polymer,
per unit volume, is V(e) , then Young's modulus can be calculated from

the change in V with tensile strain, ¢ :

d?y

(1)
de?

The intermolecular van der Waals bonds arise from dipole-dipole
induction and dispersion forces and bind one polymer chain to its
immediate neighbour. It is a short-range interaction, well modelled by

a Lennard Jones potential:

a,.12 ) a,. 6 )
Vie) = v, {(7;0 - (7;0 } (2)
a-a
where ¢ = P S Substituting and differentiating, we obtain:
)
e\ 1 13 1,7
FORLIA R e
d2V 1 14 1 .8
— 12 Vo {13('1—_;—8-) 7(7';) } (3)
de 4
a =36V
)

The second major contribution to the elastic deformation arises
from bond rotation. Polarised infrared spectroscopy on samples of
glassy polycarbonate (PC), annealed below the glass transition
temperature, gives direct evidence for the rotation of segments of a
chain about a carbon-carbon bond. The bond rotations are modelled by
a 3-link deforming unit (Bowden, 1968; Yannos, 1974) or "strophon'.
Rotation of the middle link causes an overall change in length. For
rotation to take place, the hindrance caused by the sidegroups must be
overcome. This has been modelled by a two-fold symmetric potential
(Flory, 1969):

v
V(e) = 1? {I = cos n (¢—¢o)} (4)
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Using this idea, Yannos and Luise (1982) have calculated the contributions  {:
of inter- and intra-molecular forces to the glassy modulus at O K for e
six different amorphous polymers. The relative contribution of the two
deformation modes depends on the length of the strophon links: the
longer the link the more difficult it is for the bond to rotate, causing
intermolecular forces to become more dominant. This may explain the
contention between Bowden (1968), who proposes intramolecular forces are
dominant in the modulus of a glassy polymer using polyethylene (PE) data
and Yannos (1974) who proposes intermolecular forces are dominant, based
on PC data. PC has longer strophon links than PE,

Although such models allow an estimate of the modulus at 0 K ,
they are insufficiently precise for our purposes. Instead, we use
values of Eo obtained by extrapolating measurements of E at higher
temperatures, to 0O K .

Increasing the temperature has two distinct effects, First,
thermal expansion increases the molecule separation and lowers the van
der Waals restoring forces and the forces opposing rotation about carbon-
carbon bonds: this gives a slow drop in modulus, but does not introduce

a rate-dependence. Second, the thermal energy of the molecules now

makes local, thermally activated, rearrangements possible, giving extra

H
1

=z

(time-dependent) strain, and an associated drop in modulus. The first

'_‘.,i‘

e

(O

effect (thermal expansion) leads to a roughly linear decrease in modulus A
with temperature. Yannos and Luise (1982) develop this idea, taking i
Cair

'

[

account of thermal expansion: increase in temperature increases the

N

L
'

interchain distance, reducing the force required for intermolecular
deformation. The results, even for this one contribution, are complex,

but simplify (to within +10Z) to:

T
E = Eo (1 -a iro (5
8
where
T dE
c - —E—
Eo dT

It is reasonable to assume that the rotational contribution behaves in
a similar way, so that eqn.(5) describes the effect of thermal expansion

on modulus. Lee et al. (1975) review data for moduli of glassy

polymers and conclude that they are well described by a linear
temperature dependence (eqn.5). Van Krevelen (1976) finds a better

fit to the empirical relation:

E = EO/(I + 2 T/Tg) (6)



which reduces to eqn.(5) (with a = 2) for low temperatures, but which
gives a steeper drop near Tg .

The second contribution derives from the thermally activated

motion of side groups, or of short segments of chains, past each other,
giving a little extra strain. This thermally activated relaxation is -
difficult to model because, at low temperatures, only a few sites with
the lowest activation energy, Q , can move; at a higher temperature, o
more sites with higher Q become mobile. This spectrum of activation S
energies leads to cumbersome equations. We adopt the view that 3
polymers below Tg exhibit secondary transitions in addition to the fji
main glass-rubber transition. Below the glass transition, there remains N
some limited freedom of rotation or sliding either of short segments or
side groups. The energy involved in these transitions is lower than
that for full movement, so they occur at lower temperatures. If we
assume, for ome such process, a stngle activation energy Q , then if
the relaxation time at a standard temperature T* is <t* , then at any
other temperature T,t 1is given by:

T = t*exp%(%-.-rl;-) @)
The total strain resulting from.pure elastic deformation plus a visco-
elastic contribution that is due to the transition, at constant stress,
is:

e‘%(l'* (n-exp-§>) (8)

E
where E 1is given by eqn.(1). Thus, the relaxation can be included,
provided four pieces of information are known: the activation energy
Q , the amplitude of the relaxation 4e/e and the Trelaxation time t*

at temperature T* . Further relaxations can be included by adding

further terms like that given above.

P A4

3. THE GLASS-RUBBER (OR VISCOUS) TRANSITION

'y

F;: When sufficient thermal energy is available, the van der Waals
r:% bonds holding the molecular chains of a polymer together start to melt.
;;5 This enables segments of the once elastically-bonded chains to undergo
:" large sliding movements relative to each other, introducing an element
:?: of viscous flow into the deformation of the polymer. This appears as
:;: a reduced modulus.

E§E In an amorphous polymer, a single empirical function can describe
.
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;J;j the temperature dependence of the mechanical relaxation near the glass
:{: transition. Williams, Landel and Ferry (1955) describe the ratio of
.Efg the mechanical relaxation time Tt , at temperature T to the value A
if': at a reference temperature T_ (with suitable choice of T_ ) by
+
F _ -C, (T-T.)
§:€: 108(%) = Czﬁl.r__;sy 9)
.3k; o .
20N where Ts = Tg-FSO . If Tg is chosen as the reference temperature,
_) then we find
R ~17.44(T-T
\: log() = log 22?7 T 3516 + ir-rgi (10)
:J: 8 g g
( or
:.f} 7.57(T-T )
:\;:\: n(T) = n(Tg) eXp~ T 7 T-Tg) arn
N
- Note that eqn.(i1) implies that both the viscosity and activation
'iﬁﬂ energy for viscous flow become infinite at T = Tg - 51.6° .
= The prediction is that all molecular motion should become
'Sﬁ; completely frozen at T < Tg - 51.6 . What happens, of course, is that
AL new mechanisms of deformation take over;—for example relaxation of the
‘an carbomethoxy side chain at about 20°C and the aliphatic ester group
Ej& at T < 150°C for PMMA.
:i; Using the above formulation data obtained (for example) at
D different temperatures but at similar times can be shifted to coincide

on the time scale to produce a 'master curve' at a chosen temperature.
One such 'master curve' is produced by McLoughlin and Tobolsky (1952)
from stress relaxation data of PMMA (Figs.! and 2).

Other theories have been developed to account for the temperature

dependence of viscosity in the glass tranmsition region. They include

barrier theories using potential wells and statistical theories :57f

congidering enthalpy (see Arridge 1975 for a short review). But the ;;j

WLF equation has been the most successful over the temperature range :j;x

T8 to Tg + 100 K . Although it was put forward as an empirical ;g%’

equation, it has some physical basis. Consider the 'free volume' of a e

polymer system. The free volume, V. , can be thought of as the ;iik

difference between the total volume V and that occupied by the atoms DR

e when densely packed, Vo . The total volume V 1is assumed to be that E@%?
ﬂ:Q of packed cylinders with a radius equal to the van der Waals radii ;i”j
ﬁi: around the chains (Vo) ,» plus that volume associated with vibrational 'i;ﬁ
2 %

SAon R T s . SRR i)




R T

. a*u" Y

v motion. The free volume (V—Vo) is "free" in the sense that it can
(R
s redistribute, continuously, due to thermal motion. It provides the
\ ;\ extra volume required for larger scale motion. Experimentally, the
( occupied volume increases linearly with temperature whereas the total
-.:'\, volume shows a discontinuity at T = Tg (Fig.3). Doolittle (1951,
n
" 1952) has shown that
3 B
0 n = n* exp(z) (12)
v
where n* 1is the viscosity at some standard state and fV is the
-
-f-{ fractional free volume (V-V /V) . Assuming a linear dependence of
.- [o]
-f.:: fractional free volume above Tg with temperature we find
£, = £+ a.(T-T) (at T3>T )
B v g f g g
o where ag is the volume expansion coefficient, from which
b~ ~B/f _(T-T )
n(T)
Ad ln(——y) (13)
: n(T f fa_. + (T-T))
o g g f g
Ll
\{\‘ which is equivalent to the WLF equation with
( ¢, = B/2.3 fg and c, = fg/c;f
.t_w
N where f is the fractional free volume at T
s g 8
. We include this information into the maps in the following way.
="
‘ Consider the rheological model shown in Fig.4. It describes the bond-
:-,- stretching elasticity by the spring E] , the viscous sliding of
:_3: molecules (as given by the WLF equation) by the dashpot n(T) and the
f::-' rubbery modulus by the spring Ez . The full constitutive law for this
»
> standard linear model is
E E +E
- 2 g g 1 72
o E+?€ ET*';{( E]) (14)
e
5: At constant load (creep) the solution is
s Lo E
- € = o{z—+ == (1 - exp - — t)}
E E n .
1 2
-:::', Then the apparent modulus o/e , for loading time ¢t at temperature T .j
- is 3
L4 i
l.' E T."
f:' ] — l — ._“-._‘..
e EcL. © 3 3 (15) e
. 1 2 A
1 + =— (I = exp = — t} .
.‘..'. Ez n .:.
u':ﬁ s .':
@ 48 -9
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This correctly goes to E for short times and low temperatures,

t
and to E]Ez/(El+E2) for long times and high temperatures.

Under constant strain (stress relaxation) the result is slightly
different. We have instead

E\E,

ag
g+ 7 (EI+EZ) -

The solution is

-i. (] - exp - EI+EZ
E)*E; n

and the apparent modulus is

s = Ee {1 - t)}

E1 (E1+E2)
! = - - . ——————
EC.S. El {1 W (1 exp - t)}

As before, Eés = El when time is short or temperature is low; and
Eés = EIEZ/(El+EZ) when time is long or temperature high. But the
transition between the two is different.

We now identify EI(T) with thg glassy modulus, EZ(T) with the
rubbery modulus, and n(T) with the WLF equation. The apparent modulus

is calculated and plotted using either eqn.(15) or eqn.(16).

4. THE RUBBERY MODULUS

Above T8 , amorphous polymers may exhibit a rubbery modulus
plateau of around | MN/m2 . This value is close to that of crosslinked
rubbers and arises in a similar way.

The molecular chains in the polymer form a network by curling and
twisting around each other forming mechanical entanglements which behave
rather like the chemical branch points of a crosslinked polymer. These
are called entanglements and a polymer in this region of behaviour is
characterised by an average molecular weight between entanglements, ﬁe .
As the molecular weight, Mw , increases and so more entanglements take
place, Me is reduced and a higher rubbery modulus observed.

To predict the modulus, the entanglement network is assumed to
act like a crosslinked network. When the polymer is strained, the
entanglement points constrain the free slippage of molecules relative

to each other, and the molecular network tends to align, reducing its

.
)

,-

entropy. The resistance to this ordering results in the modulus of the

[}
202030

rubbery region.
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Standard texts (Treloar 1958, Ward 1970) give a derivation of the

rubbery modulus ER for small strain. It is found that:

3 p RT

E. = ——_7° (7 e

R = e

M e

’ . @

AR |

where o is the density, T the absolute temperature and R the gas ?}:}:
. . TeTd

constant. This equation has been used to calculate the rubbery plateau :ffﬁ
TS

on the maps. A
G

3

5. NEWTONIAN~VISCOUS FLOW

At high temperature (T > [.2 Tg) the van der Waals bonds have
completely melted, and even the entanglement points slip relatively
easily. At low shear rates the polymer flows in a Newtonian viscous
manner.

Apart from the chemical dependence of viscosity, which will not
change for a specified polymer system, the viscosity is dependent on
molecular weight ﬁw and the temperature T . The dependence of the

viscosity on Mw is given by (van Krevelen, 1976):

log n, = log Ner * 3.4 1°g(Mw/Mcr) (if M, > M._)

er
(18)
log " log Nep = log(Mcr/Mw) (1f Mw < Mcr )
The temperature dependence of visgcosity is given by:

n, = n* exp(Q/RT) (19) -
The WLF equation can be combined with eqn.(18) to give, for low shear fﬁf{
"!"‘l
rates, ;f“ig
17.44(T-T ) e
g e

log o * Log Ner * 3.4 log(Mw/Mcr) T 5T.6 + (T-Tg) (20)

.
s
[}
[

r

. 2 v w -
St
]

Data are readily available to describe Newtonian flow, although large

variations can be found between different investigations.

pr ;;!
ro
' '-' C Y
W oo
sf .. .'.‘.‘
j 5.1 Data for PMMA SRR
200 ‘_\p
1 ] . _ . -
< Data from van Krevelen (1976) given in terms .
O ) v
ﬂ? of ncr(T)/ncr(f.Z Tg) are converted for Mw = 100,000 using eqn.(18), e
1.“': S
o~ ncr(l.z Tg) = [,26x103 Ns/m? and Mcr = 30,000 , also from van Krevelen. S
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It is found that the activation energies Q (in eqn.(19)) are similar,
157 kJ/mol for Diakon and 136 kJ/mol for van Krevelen's data.

The value n* (eqn.(19)) is dependent on the molecular weight
but can be calculated given a value of viscosity at a known temperature

T thus:
= {log n__(T) + 3.4 log(M /M_)}/exp(zy) 1)

The apparent modulus is then calculated from

[+ g
E TOT ~ ¢
€
- or
N E = % (22)
A
7
ol 6.  CONSTRUCTION OF THE MAPS
o
o

g The maps are constructed from eqns.{(15) and (16) together with
eqn.(22). For each temperature, the modulus corresponding to a given
loading time ¢t 1is calculated and plotted as shown in Fig.5.
Modifications of the equations give the modulus associated with cyclic
loading. We find that, to give a good fit to the data, the time

constant in eqmns.(l5) and (16):

r = él
2
and
S d
e %
'-"n' = n
N T E, +E,
DY requires modification, and we are now working on maps of doing this in
‘o a consistent way, and conducting a detailed comparison with experimental
SN data.
o

g

B
.
’ l‘ l"l

7. CONCLUSIONS

Maps can be constructed which summarise the viscoelastic modulus
of amorphous polymers E(T,t) for a wide range of temperature T and
time ¢t . Several separate mechanisms are involved: bond stretching,

constrained molecular sliding, rubbery behaviour, and true viscous flow.

The work thus far must be thought of as a feasibility study, which

LI
.

. .,
]

indicates that the method has potential, and is worth developing further.
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ag.€

Fig. 4. Standard linear solid represented by a wodel of :
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PART 3 FRACTURE MAPS FOR POLYMER-COMPOSILTES )

Summary T d

The interaction between fracture mechanisms of a fibrous composite
. are complex. The effects of certain intrinsic material parameters, like
the cohesive strength of the fibre-matrix interface or ductility of the o
matrix on the micromechanisms of fracture and toughness are unclear. "
One approach is to link our understanding of the failure processes with N
theoretical models of fracture to predict the toughness of a composite. R4
However, the complex interactions between various intrinsic material :
parameters and a set of equations would not clearly be seen. Instead,
we could construct maps based on these models to display information on
fracture and toughness in a useful form. The fracture map would have
two axes which are labelled using any two of the intrinsic material
parameters that describe the fibre composite (Table 1). The map would
be divided into areas or fields, each one depicting a particular
failure mechanism. The boundary between one field and another would
show a change in the dominant mechanism. Contour lines of predicted
toughness could be superimposed onto the map in a manner useful for

)
4‘-.0.-"‘. .
RN lih ~ N
PR N
D S WY

TOE T Sl I Sy

y

)

ol design and material selection.
Sl

o

"y 1. INTRODUCTION

Polymeric materials containing long, strong fibres, fracture by

a number of mechanisms. This section describes the principal mechanisms,

?: and the construction of maps which show the important composite
v,
- properties affecting these failure processes and the toughness. They
‘,,_ are constructed from data of the properties of the fibre, matrix and
S50 interface, fitted to model-based equations of energy absorption which
{fj describe the mechanisms. Where experimental data is not available, for
T example, the misfit strain, €, s between fibre and matrix, we resort to
’ - .
- theory to predict € . Alternatively, where related data is available,
e o]
{{{ for example, the interlaminar shear strength, we calculate values for
e the strength and toughness of a fibre-matrix adhesive bond using
o
ke fracture mechanics relationships.
2 The first part of this section describes certain fracture
j:if mechanisms like fibre-matrix decohesion (debonding), fibre fracture and
VQ{; fibre pull-out and shows how to predict two important failure parameters,
AN . * .
oA fibre debond length, %, , and fibre pull-out length, Lp . The second
.F' part shows how these predictions of fibre lengths can be combined with
ad ".' . . N . .
2 other model-based equations to estimate the energies dissipated for a
'S}{ number of fracture mechanisms. The third part shows how an estimation
jéi' of these fracture energy terms can be displayed in the form of a fracture
@ =
ADAR Throughout this section, the word ‘fibre' is used to mean either an Co-
SEN individual fibre or a bundle of fibres. R
e T
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map to show the dominant mechanism of toughening and the predicted
toughness for a particular set of material properties. A case study is
carried out which shows how a map can be used to help identify the
origins of hygrothermal aging phenomena.

The selection of maps presented is incomplete. They can be
divided into three families of composite: glass fibres, carbon fibres
and Kevlar fibres in epoxy resin. However, the method of analysing the
fracture behaviour of fibrous composites and the construction of a map
can be applied to other composite systems, short fibres in thermoplastic

matrices, for instance.

1.1 Fracture Mechanisms

The fracture stress of a brittle solid like glass or graphite is
not unique. It depends, for instance, on the distribution of flaw
size in the sample. Most of the advanced fibres, carbon for instance,
show a strength dependence on radius and length. The location of a
fracture site along the length of an embedded fibre is also sensitive
to the rate at which the load builds up in the fibre. This will depend
upon the elastic properties of the fibre and matrix, modulus and
Poisson's ratio, for example, and shear stress at the fibre-matrix
interface. In a monotonic tensile test, the fibre is first likely to
debond. The stress at which it does so is affected by the strength and
toughness in shear of the fibre-matrix interface; also fibre modulus
and radius. A complicated relationship therefore exists between the
properties of the composite and the debond stress, T4 » and fracture
stress, 0. ; and between oy » O and two fibre lengths, the debond
length and pull-out length.

Fibre debonding and fibre pull-out are the underlying failure
processes which affect the fracture toughness of the composite. It is
convenient to describe the failure processes in terms of the energy
absorbed in creating new interfacial surface and the fracture and
pulling-out of broken fibres from their matrix sockets. There are
other energy terms that contribute to toughness; the stored elastic
strain energy of the fibre, released when it snaps, matrix deformational

*
energy, and surface energies of the fibre and matrix. The mechanisms

* . . , . .
The energy associated with plastic flow in the matrix and fracture

surface of the fibre and matrix is small compared to the total work
to fracture the composite and will be ignored here.
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R of fibre debonding, fibre breakage and fibre pull-out are therefore S
N related in complicated ways. i
e 1.2 Fracture Toughness Maps T
¢ . . Ll
A It would be useful to have some way of summarising, for a given O
) . . . . . TN
-:¢ composite system, information about the dominance of each mechanism R

- At v
- ) . » . . e
&i and the important material properties affecting toughness. We have N

Y . . . . . -

- done this by constructing a map. It is a diagram with axes of any two i;ij

. . 7@

o of the composite parameters (there are at least 15 such variables, see 3
o , . . el
- Table |). Fig.! shows fibre strength plotted against fibre modulus for Rl
}ff glass fibres in epoxy. The map is divided into fields which show the f?:f

1'.\
L

regions of fibre strength and fibre modulus over which each of the

\f. failure mechanisms is dominant. The letters PO = pull-out energy,
‘215 EL = elastic (fibre) energy, and INT = interfacial surface energy.
>E: The field boundaries are the loci of points at which two
= mechanisms are contributing equally to the toughness of the composite.
#f} Superimposed on the fields are contours of constant t-uiimess (kJ/m2):
:i; these show the predicted toughness of the composite by summing the )
#ir contributions of each mechanism. Also displayed are contours of constant e
-ﬁ' fibre debond length and fibre pull-out length (mm), two failure parameters :fs
( . useful in carrying out a failure analysis of a broken specimen. In w
:;E constructing such a diagram, it is assumed that there are only two E;;
,i% variables, and all of the other material parameters have fixed values. :::?
- Such a map summarises, in a simple way, both the experimental and model- N
‘ based understanding of the fracture of the composite in questionm.
2
. 2. DEBOND LENGTH AND PULL-OUT LENGTH EQUATIONS
A In this section, we develop, with a brief explanation, the fibre
i?{ debond length and pull-out length equations used later in the construction
:i: of the maps. First, we select for the debonding and then the pull-out
::; of fibres, an equation which is based on a physically sound microscopic
"y model of stress build-up in the fibre. While theory gives the form of
‘:;: the equation, we then resort to experimental data or simple ways of
é&; predicting the values of the parameters which appear in it.
87
e 2.1  Fibre Debonding and Fibre Pull-Out
:!: When a unidirectional fibrous composite is loaded monotonically,
is; the tensile stress on the fibre and the shear stress at the fibre-matrix
gs& interface both increase. It is likely, because of the low shear
.’
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strength of fibre-matrix interfaces, that the bond eventually fails. %!E
A cylindrical crack at the interface propagates along the fibre length, T

e
‘.":\4‘
WA
S

The process is called "debonding". If mechanical interaction between

a debonded fibre and matrix is still possible, by fractional forces,
for example, then load transfer to the fibre will take place. (Matrix
shrinkage during fabrication and cooling may be the origin of such
interaction, which sets up a radial compressive stress on the fibre.)
This produces a non-uniform stress along the length of the debonded
region. Because of the variability of strength, the fibre fractures

at its weakest point. The eventual propagation of a macroscopic,
transverse crack in a composite therefore produces a fracture surface
showing protruded fibres of variable length, because of the variability

of fibre strength. This process is called "pull-out" (Fig.2).

2.2 Prediction of Fibre Debond Length

The stress at which a fibre first debonds depends upon fibre
modulus, Ef , fracture energy of the interface, G2c (in shear), and

fibre radius, re (]):

a9 = (AEfczc/rf) (1)

The frictional stress between a debonded fibre and matrix socket
is related to the compressive radial stresses produced by the matrix
during cooling and shrinkage, and the elastic properties of the fibre

(2,

and matrix. The fibre stress can be described by
g(x) = o, a - e-Bx) (2)

where x 1is distance from the tip of an interfacial crack, op and
8 are functions of the elastic constants of the fibre and the matrix
which take into account Poisson contraction of fibre under load:

ap - eoEf/vf and g = Zuvam/Efrf (1 + vm)

Em and vm are the modulus and Poisson ratio of the matrix, Ve is

Poisson ratio of the fibre and u is the coefficient of friction at
the interface, op is proportional to the residual "misfit-strain",

€ between fibre and matrix, where e, = 6/rf (6 is the difference

o »
in the radius of the matrix socket under stress-free conditions, and
its enforced radius equal to e ). Eqn.(2) shows the rate of stress

build-up decreases as the load on the fibre increases. op can
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theretore be thought of as the maximum fibre stress that can be produced ff{)
by frictional loading; i.e. when Poisson contraction of the fibre equals
the residual strain in the adjacent matrix.

For a fibre that has debonded by an amount x , the fibre stress

can therefore be written as:
~-8x
a(x) = o -(g_-9) e (3)
P P Y
Under monotonic loading, the interfacial crack spreads until the

stress on the fibre reaches O¢ (Fig.3). The fibre debond length is

therefore given by:

24 = 21n l(op - og)/ (o, - o.)1/8 (4)

If od > dg » MO debonding occurs; if cp > gg > a4 o then debonding -

spreads along the entire length of fibre.

The process of 'bundle debonding' can occur in preference to

'fibre debonding’'. A bundle of fibres can be thought of as a 'large _3
fibre' having the properties of the bundle. A bundle containing ::f%
matrix between the fibres has properties similar to those of a uni- ;ﬁ;ﬂ
directional composite with Vf = 0.80 . ?@!i

The interface toughness parameter, G2c , in eqn.(1), is a linear :;_:

function of two constituent material properties:

Gy = |(mrG) + (a - 2r)G,|/a (5)

where Gl and G2 are the critical strain energy release rates for the
fracture of interface and pure polymer respectively. The spacing

between fibre centres, a , for a square packing array is:
- 2y}
a (wrf) /Vf (6)

Vf is the volume fraction of fibres in the bundle.

For a typical epoxy, G, = 500 J/m? . We use the following G,
values of 50, 2 and 60 J/m2 for E-glass, Kevlar and high-strength
carbon fibres, respectively. The misfit strain, €, between bundle
and matrix was claculated to be about 5% ; the bundle radius, T, » was
of the order of 500 ym . Table 5 shows the predicted debond lengths

based on the above values combined with eqns. (1), (4), (5) and (6).
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2.3 Prediction of Fibre Pull-Out Length “§;x

Under monotonic loading, an embedded brittle fibre carrying a
variable load along its length will either snap at a large flaw with a
low stress or at a small flaw with a high stress. The fibre shown in
Fig.4 will actually fracture at point A , away from the surface of a
large crack, and pull-out. Its pull-out length depends upon the fibré
stress distribution and the flaw size distribution along its length.

Under stress, o , the fraction P(o) of a population of fibres

that fail, in its simplest form, 1is:

P() = 1 - o070 %)
However, the probability of failure occurring in the ith segment of a
debonded fibre is not simply P(ci) . It also depends upon the
probability that a more highly stressed section has not broken before
the flaw in the ith section has caused the fibre to snap. This is given
by the sum of [ - P(cj) for all j > i, i.e. all sections more highly
stressed than section 1 . The relative probability of fracture
occurring in section i can be given by an integral form of the
cumulative probability function:

x zd/z
I P(o(x')) (J 1 = P(o(x"))dx") dx'

o X
F(x) ﬁd/Z ld/z 8
P(a(x")) (J 1 = P(o(x'"))dx") dx'
o x'
The pull-out length is given by:
zp = (ld/2) -x 9)

and F(x') 1is the cumulative probability of x being less than x' .
Consequently, the cumulative probability distribution of pull-out

length being less than or equal to lp is:
1 - rl(zd/zz - zp)i (10)

For composites, where g4 > 0 , MO fibre debonding occurs. This
is found in strongly-bonded systems like carbon fibres in epoxy.

Individual fibre pull-out is not possible but 'bundle pull=-out' can

occur (we treat the bundle like a large diameter fibre where oy for
the bundle is less than %4 for the fibre; and ¢ for the bundle is :flf

about 807 of the individual fibre). The nature of pull-out is ff*?

.......




»:: therefore controlled by the debonding process. If separate fibres can
t;x? debond, they will pull-out individually; glass and Kevlar fibres would
:t t be expected to do this. The distribution of pull-out can be determined
M from a knowledge of P(g) (eqn.7) and the fibre stress distribution
i{?f (eqn.3). Evaluation of the integral (eqn.8) can be carried out using
e an analytical method or by a numerical technique. As a first
approximation, the average pull-out length for glass fibres and Kevlar
fibres in epoxy was found to be related to 9y in a simple way: :64‘
Ep = 2,/6.8 (1) "
i%;
and for pulling out a bundle of carbon fibres by: Ei%
B
L= 2,035 (12) -

3. FRACTURE ENERGY (TOUGHNESS) EQUATIONS

When a composite ply fractures, by the propagation of a crack from
a pre-existing notch or hole, for example, a sequence of energy absorbing
events occur in a region surrounding the notch-tip. For example, under
increasing load, the matrix cracks, leaving intact fibres between the
faces; the fibres debond and new interfacial surface is created; fibres
snap at weak points and stored elastic energy is dissipated; and most
broken fibres pull-out of matrix sockets doing work against friction at

the interface (Fig.5).

3.1 Interfacial Surface Energy Equation

The surface energy of an interface is small, perhaps a few J/m2.
However, the area of debonded fibres and fibre bundles can be large and
a significant amount of energy may be required to produce new surface.
The contribution of the fibre (Yl) and bundle (Yb) to this
toughening mechanism is additive and in proportion to the total area

of debonded interface:

G, = (bRyy Vit + (4Lyvy/ry) (13

The effective bundle fracture energy is given by the weighted average

of Y and Y,
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Y, = I(ﬂtfvl) + (a - er)Yzl/a (14)
Yy is the work to fracture the matrix in shear.

3.2 Fibre Elastic Energy Equation

Under monotanic load, the elastic strain energy stored in a
debonded fibre and matrix increases. When the fibre snaps, some of this
energy is released in the form of heat, acoustic energy, etc. An
estimation of the dissipated energy can be made from a knowledge of the
stored energy in the fibre before and after fracture (Fig.6). The
dissipated elastic energy is therefore the difference between the initial
and final states of stress. The elastic energy stored in the debonded

length of fibre immediately before the fibre snaps is:
/2
d
U, = z[ mr2lo(x)|2/2E, dx

where

-8x
o(x) = °p - (ap-cd) e

Assuming that after the fibre fractures the stress distribution

is linear (Fig.6),
o(x) = o |l - x/(op-—cd)|

then:

(o -cd)
Uf = (wr%/Ef) Io (a(x)2dx = (wré/Ef)(G;(Op-Od)/3)
Therefore:
Gel = Ui - Uf
i.e.
= 2 - (0 -0 .)2(e B4 -
Gop = Vel(o224/2) = (o m0)%(e ""d-1)/28

(15)

- 2
+ Zop(cp-od)(e BLy/ -1)/g - (Oéld/fi)l/Ef
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!1 3.3 Pibre Pull-Out Energy Equation r_:..%
o : : R
A The stress to pull a fibre out of its socket embedded at a distance RS
A x is: S
Ny ]
: -8x
* o(x) = o (1 —e ™) ®:
P ot
.=fj and the work to pull-out a single fibre over a distance 2 1is:

- " w o= f wr%o(x) dx

If the pull-out lengths have a uniform probability distribution, with

{f: an average of EP , then the averige work of pull-out can be shown to
::: ve(?);

A -

‘ G, = vfcplip + (B - 1)/g] (16)
ﬂ.:{u

- 4, CONSTRUCTION OF THE MAPS

:;iz The failure mechanism which is dominant (meaning it comtributes
;Sg most to the total work to fracture the composite) depends on the

' properties of the fibre, matrix and interface. It is helpful, for a

( . given composite system, to show the conditions under which each mechanism
55? dominates and to display both the experimental data of toughness and

-i;: predictions of the model-based equatioms. Such a diagram or "map"

-;'-’.-: summarises, in a way which could not be achieved by examination of a

%f% series of equations, a model-based understanding of the fracture of

522 composites, together with a display of experimental data. Ways of doing
1;&3 this were introduced briefly in Section 1.

R\

‘ 4.1 Method of Construction

Eiil First, data for the material's properties are gathered; fibre

::3 strength and modulus, fibre diameter, matrix strength, modulus and
]:ié toughness, interfacial shear strength and toughness, and so on. Second,
=t we predict the fibre (and bundle) debond length, ld , and pull-out

fi: lengths, lp ; also the frictional stress distribution parameters, op
éy% and 8 , from the material properties. Third, values of Ly and lp ,
«:} together with appropriate values of the material properties, are

o inserted into the model-based equations to predict the energy dissipated
’g;: for each micromechanism of fracture. Fourth, a computer constructs a
A Q: map by allowing any of the material properties which affect a fracture

b\

%2
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gl process, to be varied in turn along the two axes of the map, keeping
-2 all other material properties constant. The contours of constant

toughness are obtained by summing the energy-based equations to give

the total work to break the composite. Fifth, predictions of Qd and
E?; lp are displayed as contours of comnstant length. Sixth, any

e experimental data plots of toughness and measurements of Qd and 2
s are located on the appropriate map, if required.

Values of the parameters used for E-glass, Kevlar 49, high modulus

and high strength carbon fibres are listed in Table 2, A selection

of typical maps is shown in Figs.7-10,

4.2 Comparison between Maps

{ : The predictions for typical composites, marked by a triangle, are

summarised in Table 3. The models predict reasonable estimates of oo

toughness, ﬂ.d and lp , for all fibre systems despite the wide __

variation in fibre properties. In particular, the models predict the -._f:.::
' toughness of carbon fibre composites to be primarily due to the debonding k‘.i
- of bundles of fibres, later pulled-out after fracture; and the toughness :.'_‘,':-
::. of Kevlar and glass fibre composites to be due to the debonding of '

individual fibres, later pulled-out after snapping. These predictions

are observed in practice. The predicted toughness of Kevlar composites ‘;“.
::"3 is high, principally due to fibre pull-out. In contrast, the fracture o
.: toughness of high modulus carbon fibre composites is low, derived from
_,1 the debonding of fibre bundles. A summary of the predictioms is

displayed in Table 3, where the notation + indicates an increase in

-{'::. toughness or fibre length with increasing material property. ji:‘:-.1
..'\ ' .‘_'.
43
A 4.3 A Case Study X
n.‘:-‘ N -
| Glass-epoxy laminates |0/90| were fractured in 3-point bending bas ]
7::3‘ after exposure to a hot, humid environment for up to 100 h . The _’-::’-:1
--~ I "' "H
:,-.1 toughness, Gc , was claculated and the fibre pull-out lengths were {.jv_‘.]
,\: measured using an optical microscope. We observed a fall in toughness ) 4
A L e
L) from 27 kJ/m? to 10 kJ/m? , approximately. Fig.ll displays the ,'3
'.‘j—:: experimental data on a facture map. We believe that the changes in ~"t'.:.
e . . . . . . '-:"\4
S toughness are principally due to variations in fibre strength and s
o
2 fibre-matrix misfit strain, which is read from the map. This implies j
o that € initially drops due to moisture induced swelling of the ;.bi
oo matrix. Degradation of fibre strength by moisture attack causes the ]
% large reduction in toughness with time. f-f-:{;a
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The micromechanisms of fracture and the toughness of a fibre SRR

y 4
P s

composite can be displayed in the form of a map. These maps show how

the fracture behaviour is affected by changes in the properties of the o
composite, give guidance in designing a composite for optimum toughness, :
and provide insight into the origins of envirommental degradation. B
The application of these maps to predict the fracture stress of .
composite laminates containing holes and notches is important and needs ‘ X ¥

to be pursued further.
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MATERIAL PARAMETERS WHICH APPEAR IN THE MODELS

TABLE 1.

FIBRE

MATRIX

Eb,

u,

INTERFACE

rb,

GEOMETRY

)

b - bundle @m - matrix

(£ - fibre
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TABLE 2. TYPICAL VALUES OF MATERIAL PROPERTIES USED
. CARBON
GLASS | KEVLAR
- HIGH MOD. | HIGH STRENGTH
- E, (GPa) 35 76 220 140
E; (GPa) H 5.5 9.8 9.8
\-.
:j_ Gy2 (GPa) 1.9 2.1 5.5 5.3
NG viz 0.3 | 0.34 0.34 0.34
~
. a, (GPa) 0.8%0 1.34 0.89 1.24
A a; (GPa) [ 29.6 60 66
.::: t12 (MPa) 8s 60 83 83
o Fibre Radius | Bundle Misfit Strain
-‘: l'f (um) Cb (%)
o E-glass 7 5
N Kevlar 49 6 4.3
Carbon 4 2.9
- Fibre Type G (3 o?)
)
Carbon High Modulus 24
{
High Strength 61
A
e Kevlar 49 2
\‘.n
A E-glass SQ
N (Figures in brackets are not contoured on the maps]
S
<" »
" - - 2, DOMINANT
\: FIBRE TYPE Los (mm) | 25 (mm) |2y (mm) |G (R 3%)) yeoyanIsM
P W,
!—’ GLASS 0.21 (v 0.1) 3.8 61 INTERFACE
e KEVLAR 0.711 | o3 | 7.2 240 | PULL-OUT
~.‘j-.
HIGH MODULUS CARBON Q) 0.09 2.9 19 INTERFACE
:j'.-; HIGH STRENGTH CARBON ()] 0.22 7.7 67 INTERFACE
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A fracture map for E-glass/epoxy.
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Pull-out
Fibre fracture
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A schematic of the crack tip region in a brittle,

unidirectional fibrous composite.
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Fig. 4. Stress profile in a debonded fibre, together with
the variation of fibre strength to show the loca-
tion of a fibre break (point A).
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Before fracture

% — After fracture
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Fig. 8. A fracture map for HS carbon/epoxy.

77

NN T AT A e N A . Lol
P PR IVt e
I ) AR e e i
."s“ }_! :!'.:‘~:.‘; ‘.‘:':.‘ AR '..V'..“...'._'t ‘-., Tt '-,‘-'. K . .
Rodatadacama> laalnaa a2t ata e et e




1 5. N e, ST Ty -..\.-\...-.m, ... .‘....._..4....

AL A ey
.

L/t S/ e i

155

-
|

—
.

KEVLAR 49/EPOXY

FIBRE MODULUS (GPa)
A fracture map for Kevlar 49 /epoxy.
78

TOUGHNESS (kJm™2)
BUNDLE DEBOND LENGTH {mm)

FIBRE PULL-OUT LENGTH (mm)

Fig. 9.

1

. W R >
N T T | ! @
. o (0d9) HION3HLS 3uBld T
~ -—
N
- x..\J .-....\J < LA AR IV A R N s AR AR IR
. -.. .\ ..- .s. A i . B S X . . : . A A -......-- " \-.:c‘u-f\ll F LR R AT A N -A-n..an- .\fn'f-b'& .
PRAPRPLrars N | \n.?l“\.“;-}\bf-l. bnl;.ﬁa!.-..-is




DCaa A i)
s

E-GLASS/EPOXY

A fracture map for E-glass/epoxy.

INTERFACE "G’ (G,) (Jm?)

BUNDLE DEBOND LENGTH (mm)
FIBRE PULL- OUT LENGTH (mm)
10.

TOUGHNESS (kJm™%)

Fig.

> (,wr) (*9) .9, XINLYW o
o~

. oo -.“ K ‘. ... ua [a .-« o .)n-)- . sy s .-\n.
- ANARE RN - Al ...-..... N \f\}\..% B \ .



AL L LA O AR ST . ae ., b} . R . —H [} . X
' ’ o
3 ,
b
8
3
)
3
_...
-
{ (@]
b . -—
g
v %
: e
3 w
o Y
y 13
3 <
" o
]
- “
2
_'- .
’ o
" .
=t .
Fw .”...-‘Hu
= s i
8 . .
@
1 ] S
po] Lo
&0 .
ol
.

FIBRE MISFIT STRAIN (%)

BUNDOLE DEBOND LENGTH (mm)
FIBRE PULL-OQUT LENGTH (mm)

TOUGHNESS (kJm™2)

|2

0-4

L T T L T T I T o

v (%) NIVHLS LI4SIW 370NN8 w S
B~ o~ ..‘...,..,L
K

e

SR e 2o A B A AL Te W' Thttie 2 B2 ....-'o\-..--..-&w,_.......\...k

SRR AL AU R O LN b WO S5 RN

1 f)uw.'t AL A A-_{f- A" YR ..JI »
AR ‘@1 RAE AN R AR LA .




Ty PR ML AR . « e - ! . L A Al A Mt e se N gn g
o v R Y ...\-.q. ... . ‘. Pt ta) ey - AR A AL
A B A LR R P A AR S LT T e AR R

R A AL i A B S e 2

1-0

—rv—y

A S g g
E-GLASS/EPOXY

g

ey

._ S
) <
Ll -
. 32 o)
. > g
. |N.. o
<
mm .
—— (@} —
C
(W\ [l m
—
EL L o)
[C3T) (2] &0
4
&3 — -1
oY b3 tx,
o
23 o
m m
w
o= w
wk
-4
aw
@
a0
[+ s R TH

TOUGHNESS (kJm™2)

TR

-
0-4

T T T T T T T !
(%) NIVHLS 114SIN 370NNG

7-5
2-5

¥, Ty o
% A SR
OO T o ®

T o v 2 F ¥V




TRERERE N A ve

[P T IR R
ol ! I
i ..-‘\.....; A

Lo e

-

E -GLASS/EPOXY

1

b — = — — —_ _ _ B
S .
! _ - O
% S
2N .d.
o ) :
v.. —_— g~ - - T T T T T T T 10— — w m
.r. EE 7 d ) 3
. -y - _ _ o~
3 €t _ _ 18 o
. iz b3 .
-. G 0
g 22 | _ o st0— 4 X —
% J)Lw m m
) mw.nlu — 08 = ¢ — — — — _ ” %o
) 00 — 3 &

Sﬁb L e e e e e e e e e e e — e —_—— o — —— — £0—— -
. nesd -

mﬁm —— 001 — 9 = - - — =

%WM - — e e - e e e - - == — 0 —

338

. 0 . gt e e e e —m e = e o= e = = — = — o = Y0 —

——— - e e o - o - = —— — o — e

— = — - =

(DAW) HLIONIYLS XIHIVW



| g ma ———— F VTP —— a — " . ..~<1114-_|..J.13144 T
v o, .-&.,nx.\ . LSRR LA ...... o et c.

r.. ...\., u4 et .. AP P. .". EEE R .....,... ...... . et ' .. ' ..... ’ ......-....-..-.-- '... St .
SRR S _ : Ihg PSR ) IR SR IATERES SRR b

3

»

b

A A e g r

E -GLASS/EPOXY

o .
a o
o o
~ o
o 9]
[ &)
(O]
m- .
@ = =
T
75 ] U
e
w ®
@ el
m <9
[T

1-0

1 T T T T 1 — T T
AELV SNIgvy 31aNN8

300
100

LERREN , JL.......J.-I AN g e N T
P RO - - - 4-&-1-. - » ht; o ] "- -\.n-\ -L
Ve —\.\.-- o y e N " A. * L o ~..v-1f..¢-v-l




TOUGHNESS (kJm™%)
BUNDLE DESONO LENGTH (mm) E-GLASS/EPOXY
_— - FIBRE PULL-OQUT LENGTH (mm)

1-0 1 1 L | l 1 L

4.

SN

FIBRE MISFIT STRAIN (*%)

LT
i"

“ 8.
.
PRSr ]
.
[}

.

i

e

Vit

- ! PO o a' @ ! ! b
N AT
04 T | T T T T T T T

25 VOLUME FRACTION (%) 75

Figure 10, Cont'd.

£ T
s 0 f

« w . .
Py
]
¢

84

o
..-.
AR N - --_' . '_ \‘.
e T T et e :\.',,

. CNP IR S g PRI SRR . D T I S - .
PR S P SR s DRI L AP R I ‘ - o S S Nl ol L WL W, \ L,



ﬂ.. at U O
AT o, " R ' L AP R s o
P * ‘. .-.. . R ..'-\— -\ . \:' . .. R A .-\ LTI T B r ..\ AR
1 R . ) NS A .. vy ->Lh. R ...-./.-\. H ......... .. .\.. ....\ Sl
ks LT

A

10

E -GLASS/EPOXY

-7- 7'_. -=

..‘r

Cont'd.

o

Figure 10.

-

FIBRE RADIUS (,Jm)

e vy

SITWINT

BUNDLE DEBOND LENGTH (mm)
FIBRE PULL-OUT LENGTH (mm)

TOUGHNESS (xim™%)

el Sl

L nad

INT

gl 4
—
—
—
-
-
4

m (wrh snigvy 310NNE

50

-"t“v‘-'

']

dF W MU

kA B

. I-. I-. v' J

\\.....-

e A it -

........I..fm-\\-.\-\.«\i X
NS

irlysrrt Al N.Dvr-\!oH

f..-.-.s\N; s v % 2

x




E - GLASS/EPOXY

BUNDLE DEBOND LENGTH (mm)
FIBRE PULL-OUT LENGTH (mm)

TOUGHNESS (kJm™2)

1

g
\ v
Ng
N
/
///
N
ﬁmv m
N\, O .
/M\v n >
% 3 g
cal = g
| 2 3
- 2 O
O O
= N ®
)
— — E -
g »
a &
] od
- f
£
1
.M (0d9) H19N3YILS 3yald ~

PR A
\.. e e e A0

LI I | R LN DU I - LA - s v 0w . ey.
VLRI XX AN SRSONINTCRT - R OE D SO LI 1 SOAOTLIANGH G Y
oo POIRNRRS PR .(;qu:.( . - R LN . ,.. Y ..a.... RS - r.»,-. .-\.v. [N .-.-.r‘ -.-..-......n.-\n. " —n.' .-...\- -.--.n.. .\I\Q



‘wesys 032 axnsodxs Jo sanoy 03 Is3sx jurod mmaep
yoes aprsSuore sxsqumu ay] -pasodutaadns eiep sssuyldnoz

1eiuswrtradxs yatm Axods/sse18-3 (06/0) o3 dew axnisery vy 11 "814

(D49 ) HION3YLS IHgld — 0

l {
T 1 g | I B g S S = G20
1No-1nd 34dld | — — - - —— T — |
T = —TEY, !
S— ——— = ey g XAV
4N LIV _ | 70 “
\a _ _ 7l _ _ [ — " Mw..o | OG_J
- _ i \“\ i
. ! [ | <
. i ul _ | _— - —
w. v S | | vv“ \ mw
.U.. | | = _'ﬂ | 1] —_—
? —— ! " \ n. () _ “ \ " —
.
.H _ ! \ — _ s
.- | — k ! | prd
! o _ A “ “ -
- | | | | i 0
g 07 1 [SE  0Off | mN\r ~[0z | Gl I ot <
_ " B 5 "
. _ ,
5 \ & - u,w WW / HLON3T 1N0 1INd — — ; S/l
y , ? _‘_\Eozu._ aN083Q 37aNNg - - — =
AXOd3 SSV19-3 “ Z-WO%  SSINHONOL ——
..... ' ...‘.. 2 «l -d-(-nﬂhium BNDDBE o \.<---..¢v-‘ ? BENVISEEA " PRV (\a- DR NI NIRRT "L >

87

LIRSSl -



Ashby, M. F.

Deformatfon and fracture maps for polymer-toams, solid polymers and
polymer-composites / M. F, Ashby, P, W. R. Beaumont. -- Champaign, I1l
Construction Fugineer{ng Research Laboratory, 1984.

87 p (Technical manuscript ; M-344)

1. Polymers and polymerization-~fracturc. 1. Beaumont, P. W. R.
1I. Title. 11l. Serfes : Techni{cal manuscript (Construction Engloeer-
ing Research Laboratory) ; M-344,




zr v

TEY ok W
N . L% {

. et

TSN TS TH TS T R T PR LT TGS S U S o S

I Y S O B




